Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
نویسندگان
چکیده
Traditional generative adversarial networks (GAN) and many of its variants are trained by minimizing the KL or JS-divergence loss that measures how close the generated data distribution is from the true data distribution. A recent advance called the WGAN based on Wasserstein distance can improve on the KL and JS-divergence based GANs, and alleviate the gradient vanishing, instability, and mode collapse issues that are common in the GAN training. In this work, we aim at improving on the WGAN by first generalizing its discriminator loss to a margin-based one, which leads to a better discriminator, and in turn a better generator, and then carrying out a progressive training paradigm involving multiple GANs to contribute to the maximum margin ranking loss so that the GAN at later stages will improve upon early stages. We call this method Gang of GANs (GoGAN). We have shown theoretically that the proposed GoGAN can reduce the gap between the true data distribution and the generated data distribution by at least half in an optimally trained WGAN. We have also proposed a new way of measuring GAN quality which is based on image completion tasks. We have evaluated our method on four visual datasets: CelebA, LSUN Bedroom, CIFAR-10, and 50K-SSFF, and have seen both visual and quantitative improvement over baseline WGAN.
منابع مشابه
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Evaluating the performance of generative models for unsupervised learning is inherently challenging due to the lack of well-defined and tractable objectives. This is particularly difficult for implicit models such as generative adversarial networks (GANs) which perform extremely well in practice for tasks such as sample generation, but sidestep the explicit characterization of a density. We pro...
متن کاملMAGAN: Margin Adaptation for Generative Adversarial Networks
We propose a novel training procedure for Generative Adversarial Networks (GANs) to improve stability and performance by using an adaptive hinge loss objective function. We estimate the appropriate hinge loss margin with the expected energy of the target distribution, and derive both a principled criterion for updating the margin and an approximate convergence measure. The resulting training pr...
متن کاملGradient descent GAN optimization is locally stable
REFERENCES 1. H. K Khalil. Non-linear Systems. Prentice-Hall, New Jersey, 1996. 2. L. Metz, et al., Unrolled generative adversarial networks. (ICLR 2017) 3. M. Heusel et al., GANs trained by a TTUR converge to a local Nash equilibrium (NIPS 2017) 4. I. J. Goodfellow et al., Generative Adversarial Networks (NIPS 2014) An increasingly popular class of generative models — models that “understand” ...
متن کاملGenerative Adversarial Networks using Adaptive Convolution
Most existing GANs architectures that generate images use transposed convolution or resize-convolution as their upsampling algorithm from lower to higher resolution feature maps in the generator. We argue that this kind of fixed operation is problematic for GANs to model objects that have very different visual appearances. We propose a novel adaptive convolution method that learns the upsamplin...
متن کاملGenerative Multi-Adversarial Networks
Generative adversarial networks (GANs) are a framework for producing a generative model by way of a two-player minimax game. In this paper, we propose the Generative Multi-Adversarial Network (GMAN), a framework that extends GANs to multiple discriminators. In previous work, the successful training of GANs requires modifying the minimax objective to accelerate training early on. In contrast, GM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.04865 شماره
صفحات -
تاریخ انتشار 2017